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ABSTRACT

Theoretically based turbulence models have had success in predicting many features of

incompressible, free shear layers. However, attempts to extend these models to the high-

speed, compressible shear layer have been less effective. In the present work, the compressible

shear layer was studied with a second-order turbulence closure, which initially used only vari-

able density extensions of incompressible models for the Reynolds stress transport equation

and the dissipation rate transport equation. The quasi-incompressible closure was unsuc-

cessful; the predicted effect of the convective Mach number on the shear layer growth rate

was significantly smaller than that observed in experiments. Having thus confirmed that

compressibility effects have to be explicitly considered, a new model for the compressible

dissipation was introduced into the closure. This model is based on a low Mach number,

asymptotic analysis of the Navier-Stokes equations, and on direct numerical simulations of

compressible, isotropic turbulence. The use of the new model for the compressible dissipation

led to good agreement of the computed growth rates with the experimental data. Both the

computations and the experiments indicate a dramatic reduction in the growth rate when

the convective Mach number is increased. Experimental data on the normalized maximum

turbulence intensities and shear stress also show a reduction with increasing Mach number.

The computed values are in accord with this trend.

1This research was supported by the National Aeronautics and Space Administration under NASA Con-
tract No. NAS1-18605 while the author was in residence at the Institute for Computer Applicationm in
Science and Engineering (ICASE), NASA Langley Center, Hampton, VA 23665.



1 Introduction

The reduced growth rate of the high-speed, compressible shear layer relative to its low-speed

counterpart has been confirmed in several experimental studies, for example, in the recent

investigations of Papamoschou and Roshko', and Elliott and Samimy'. However, variable

density extensions of incompressible turbulence models, without any explicit compressibility

terms, have failed to predict the significant decrease in the spreading rate caused by an

increase in the convective Mach number. This has led to attempts by Oh 3 , Vandromme 4,

and Dussauge and Quine s, among others, to make phenomenological modifications to in-

compressible turbulence models, in order to obtain successful predictions of the compressible

mixing layer. Recently, Sarkar et al.6 and Zeman7 have recognized the importance of an addi-

tional contribution to the turbulent dissipation rate, which is generated by the non-negligible

fluctuating dilatation in compressible turbulence. The additional term - the compressible dis-

sipation - has been modeled by Sarkar et al.6 ; this model is based on a low Mach number,

asymptotic analysis of the compressible Navier-Stokes equations and is calibrated with ref-

erence to direct numerical simulations of compressible, isotropic turbulence. The present

paper applies the model of the compressible dissipation to the high-speed shear layer within

the framework of a second-order turbulence closure. A schematic of the shear layer is given

in Fig. 1.

The paper is organized in the following manner. In Section 2 the exact governing equa-

tions are given, and the turbulence models constituting the second-order closure are de-

scribed. The numerical procedure is outlined in Section 3. The results of the calculations

with the second-order closure are given in Section 4, and conclusions are presented in Sec-

tion 5.

2 The governing equations

We obtain the equations for the mean variables by first decomposing each variable into a

mean component and a fluctuating component, and then averaging the equations for the
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following variables: the density p, the velocity ui and the total energy E. The total energy

E is defined by
E =Ui'ui +C

2

where T denotes the static temperature, and C, is the specific heat at constant volume.

The Reynolds decomposition of an instantaneous variable 0 into its mean and fluctuating

components is

where, by definition, €" 0. The Favre decomposition of an instantaneous variable is also

used in compressible turbulence, primarily because the resulting structure of the averaged

inertial terms is simpler; this decomposition is given by

-=$+q'

where € is the density-weighted Reynolds average,

P

The overbar over a variable is used to denote a conventional Reynolds average, while the

overtilde is used to denote the Favre average. A single superscript ' represents fluctuations

with respect to the Favre average, while a double superscript " signifies fluctuations with

respect to the Reynolds average. The conventional Reynolds average of Favre fluctuations

is non-zero, in particular, ' -p"$"/5. After averaging the instantaneous Navier-Stokes

equations, the following mean equations are obtained:

Conservation of mass:

) + (Tik),k = 0 (2)

Conservation of momentum:

O9(&Til) + (#Tikiii),k = -Pi + T k,k - (TU:Uk),k (3)
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where the mean viscous stress tensor is given by

2
1i AU'*+*ji - 3.II7Uk,- .S

2-
1T k + ii'i - 3 A___ ~i

Conservation of energy:

Ot ( E) + (i !E),k = (Tjk~j - Uk - qk),k + (,r<u" - - -5Z"-Uk),k (4)

where the mean heat flux is

and the turbulent energy flux, after using (1) becomes

E'u= CT'u' +- iu'u + j Uk

+ukuk + 2

The mean pressure is related to the mean density and temperature through

T RT (5)

In the above equations, p and r. denote the molecular -iscosity and the thermal conductivity,

while R denotes the gas constant.

In order to close (2) - (4), it is necessary to provide models or modeled transport equations

for the Reynolds stress tensor uVu-, turbulent heat flux T'u, pressure-velocity c.,-relation

Uvelandtstress-velocntryu'!, also, a model for the turbulent n" . fluxp U/'

is needed to convert the Favre-averaged velocity uk to its Reynolds-avera. ,d counterpart.

Since the closure is applied to high-Reynolds number turbulence, the term T"Ouj" in the energy

conservation equation (4) is neglected. We note that, for situation- with constant density

and zero turbulent Mach number, the models and the transport e;iuations should simplify to

their incompressible counterparts. Thus advances in turbulerce modeling for incompressible

flows 8'9 can be carried over to "!,e compressible case.
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The turbulent mass flux is modeled by the gradient transport expression

1It C~k 2 _
= - C. (6)

where k = uiui/2 is the turbulent kinetic energy, e is the turbulent dissipation rate, the

model constant C. - 0.09, and the turbulent Schmidt number oP 0.7. Modeling of the

turbulent heat flux is accomplished in a similar fashion,

Tu '  Tj (7)

where the turbulent Prandtl number 0 T= 0.7.

The exact transport equation for uiu', is

- + (p ikuu),k = PO + IIj - Tik,k - Cij

2
+ - ,uA,3 + + (8)

where

Pij = -P(uukiuj,k + U,'UkUi,,k)
- 2-

-- j pu,,j + pj"U, p"u6,k

11- I- 7 I -

In (8), Pj is the production, fIj is the deviatoric part of the pressure-strain correlation, Tik

is the diffusive transport, and fi,* is the dissipation rate tensor. Apart from the appearance of

the pressure-dilatation p"u. k and the term u, (8) is structurally similar to the incompressible

Reynolds-stress transport equation.

We assume that, as a first approximation, an incompressible model will suffice for the

deviatoric part of the pressure-strain correlation. The following well-tested model of Launder,

Reece and Rodit ° is used for the pressure-strain correlation,

H,, = -C,-Eb,, - C 2 (P, - -b j,) (9)
3
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where the anisotropy tensor bi is given by

q2 3

and q2 - u', = 2k denotes the trace of the Reynolds stress tensor. In (9) the model

constants are

C,=3.0 , C 2 =0.6

Since the primary aim of the paper is to study the influence of terms that arise solely from

flow compressibility, we do not use more sophisticated incompressible pressure-strain models,

such as those proposed by Shih and Lumley"; Fu, Launder and Tselepidakis12; and Speziale,

Sarkar and Gatski'.

The dissipation rate tensor Eij is commonly believed to be isotropic at high turbulence

Reynolds numbers, leading to the model

2
Ej = 2 -;565(10)

where the turbulent dissipation rate e is given by

U/ 1 (11)

The viscous stress in a compressible fluid is

T"i = iz(ui,j + up,) - 24LUk,k6ij (12)
3 ,

where we have neglected the bulk viscosity. As shown in Sarkar et al.', substitution of (12)

into (11), followed by some algebraic manipulation, gives

S + o) (13)

where

(14)

and

4
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Here wi' is the fluctuating vorticity, and d" = Uk, k is the fluctuating dilatation. The decom-

position (13) of the turbulent dissipation rate e into the solenoidal dissipation 6, and the

compressible dissipation t is asymptotically valid for high-Reynolds number turbulence, and

is exact for constdnt-viscosity homogeneous turbulence. Because of the explicit compressible

contribution to the turbulent dissipation rate, the treatment of C has to be modified with

respect to the incompressible case. Developing an appropriate, direct modification of the

transport equation for c is a difficult proposition, because the exact transport equation for E

is complicated for the incompressible case, and even more so for the compressible case. Also,

as discussed by Speziale' 4 , the addition of new terms into the E transport equation has often

led to unintended, deleterious effects in homogeneous flow. In the present work, we adopt

a simpler alternative. The incompressible form of the dissipation equation is retained as a

transport equation for c,; such an approach is valid, because E, is not affected by moderate

levels of compressibility6 . It remains to model c,; we choose the simple, algebraic model of

Sarkar et al.6 ,

-r = ale,.Mt (16)

which is motivated by an asymptotic analysis of the compressible Navier-Stokes equations

with M, as the small parameter. Here Mt denotes the turbulent Mach number defined by

Mt = vq 2/".RT, and T is the Favre-averaged temperature. Finally, the model for Eij becomes

2
-ii= _e,(l + al M2)6j (17)

The model constant was set as al = 1 with reference to direct numerical simulations of the

decay of isotropic, compressible turbulence. Zeman' has also used a similar decomposition

of the turbulent dissipation rate, and after assuming that eddy shocklets occur in high-speed

flows, he derives a model for the contribution of these eddy shocklets to the compressible

dissipation.

In the present work, we assume that the bulk viscosity ji = 0. If the bulk viscosity IL, is

non-negligible, for example in polyatomic gases, there is an additional turbulent dissipation
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term ;yeb = T'2d" 2 which can be modeled as Eb = a 2cMt2. If the value of p, is known, a 2 can

be easily determined from a, by the relation a 2 = 3jal/4)!.

The pressure-dilatation p"d", which is not necessarily single-signed (i.e; it is neither

positive semi-definite or negative semi-definite) like the compressible dissipation, is a more

difficult term to model. Low Mach number asymptotic theory l'5 6 suggests that p"d" is

negligible compared to c., and from direct simulations6 it appears that in isotropic, moderate

Mach number turbulence p"d" is appreciably smaller than cc. In the present closure, we will

neglect p"d" relative to c.

The diffusive transport Tijk is modeled by a gradient transport expression,
C. ( q 2 ) 2  u " - - :-

Tijk C. -[N u Ju),k + (jujk),i + (utuk),j] (18)

where C, 0.018. The quantity u2 is related to the turbulent mass flux p"u' by

U. - '(19)

and after using (6) for the mass flux, we obtain the model

S----P, (20)
pe~ap

The standard high-Reynolds number form of the dissipation rate equation is used as the

transport equation for c,
+= kCeu - C,2T-" + (C,-ukuIt,,),k (21)

The model coefficients in (21) are

Cj = 1.44 , Co= 1.90 , C= 0.15 (22)

For the present problem, we need to solve (2)-(4), along with the equation of state,

to obtain the mean variables: , U, V, and E. In the case of the plane shear layer, the

Reynolds stress tensor has four non-zero components: u'v , u, v" and w'2 , which are solved

by the corresponding components of (8). The equation for the solenoidal dissipation rate E,

completes the set of governing equations. Thus a system of nine coupled, non-linear, partial

differential equations along with an appropriate set of initial and boundary conditions must

be solved.
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3 Method of Solution of the Governing Equations

The transport equations for the mean flow and Reynolds stresses are written in the phys-

ical domain and must be transformed to the computational domain using an appropriate

coordinate transformation. For the physical problem under consideration, an algebraic grid

generation technique is used to generate the mesh. In the physical domain a uniform grid

is used in the axial direction and in the normal direction the grid lines are clustered near

regions where strong gradients exist. A uniform mesh is used in the computational domain.

The governing equations are first cast into a vector form, where U is the dependent variable

vector consisting of nine components, the vectors F and G respectively denote the x and y

flux vectors, and H is the source vector containing the terms causing production, destruc-

tion and redistribution of the Reynolds stresses. To numerically obtain the solution for the

vector U, the governing equations are then transformed from the physical domain to the

computational domain, giving the following system of equations,

a& ap a
- + -+ (23)

where

U = JU , = JH

P' = Fy,7 - G x , , = Gxe- Fye ,J = Xey,7 - y eX ,7.

In (23), a superscript () denotes quantities in the transformed system, (xe, x,, ye, y,) represent

the metrics of the transformation, and J denotes the Jacobian of the transformation. If the

physical grid is given, the metrics and the Jacobian of the transformation can be easily

computed.

The governing equations are integrated explicitly in time using the unsplit MacCormack

predictor-corrector scheme. During a specific numerical sweep, the inviscid fluxes and the

first-derivative terms in the source vector H are backward differenced in the predictor step

and forward differenced in the corrector step. Second-order central differences are used for
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the viscous and heat flux terms. Hence the complete scheme for both the predictor and

corrector steps can be expressed as follows

Predictor:

A j +T =-AtI -His+ ,G, HIj, 1 , ^ -i

U("-  U Aj + A77,

Corrector.

. : n~ Z~k~ ,i  / n+Ii
A/Ifi,j n+1 /k A t + Al -ioi

/

n+ 1 1 n n+ - n+I)

U U,j + AU1,j2 \

The composite numerical scheme is second-order accurate in both time and space and,

being an explicit scheme, is conditionally restricted by the Courant and viscous stability

limits of tlue governing equations. The solution procedure icquires no scalar or block tridi-

agonal inversions. The flow field is advanced from time level n to n+1 and this process is

continued until the desired integration time or steady state has been reached. Since the

Reynolds stress transport equations contain stiff source terms, the maximum CFL number

used in the computation was limited to 0.5.

The numerical code used in this study is a two-dimensional, elliptic, Navier-Stokes solver

(SPARK2D 16) written in a generalized body-oriented coordinate system. As such, various

two-dimensional free shear flows and wall bounded flows can be handled by the numerical

code. The code in its original form used a second-order spatially and temporally accurate,

two-step MacCormack scheme. The latter versions of the code employ a variety of higher-

order compact algorithms' 7 (4th and 6th order) and various upwind schemes. Local time

stepping and residual smoothing options are also available in the code to accelerate the

convergence to steady state. Both laminar reacting and non-reacting flows can be easily

handled by the code. la the present research work, the capabilities of SPARK2D are further

enhanced by adding a second-order Reynolds stress model as a turbulence closure.
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Since the governing equations are elliptic in nature, the boundary conditions have to be

specified along all four boundaries. These include inflow, outflow and outer boundaries (lower

and upper boundaries) respectively. At the inflow boundary (x=0.0), profiles are specified

for the velocities, static pressure, static temperature, turbulent stresses and the turbulent

dissipation rate. Since wc are interested in the downstream fully-developed regime, the

specific form of the inlet profiles is not crucial.

The outer boundaries always remain in the free-stream and the appropriate boundary

condition is to assume that the normal derivative of the flow variables vanish along those

boundaries. The gradient boundary conditions, not only preserve the free-stream values

along the outer boundaries but also provide nonreflective conditions for the outgoing waves.

The outflow boundary (x = xmr) is always supersonic, and hence the values of mean flow and

turbulence quantities are determined by zeroth-order extrapolation from upstream values.

Along with the boundary conditions, the governing equations also require a P'et of initial

conditions. The initial conditions at time t=O for all the variables are obtained by simply

propagating the inflow profiles throughout the computational domain. Having specified all

the boundary and initial data the equations are marched in time until the residual based

on TU decreases by six orders of magnitude, indicating that a converged solution has been

obtained.

4 Results

It is known that the fully-developed, high-Reynolds number shear layer spreads linearly, and

that the growth rate dS/dx satisfies the relation

d6 = U1 - U2  (24)
dx U1 + U2

where 8(x) denotes the width of the shear layer, and C6 is approximately constant. The

shear layer thickness 6(x) has been defined in several ways by previous inves,;fators; in the

present work, 6(x) represents the distance between the two cross-stream positions where the

normalized streamwise velocity U* = (U - U2)/'(U 1 - U2) is respectively 0.1 and 0.9. The

10



fully-developed nature of the shear layer is also characterized by the maximum values of the

normalized turbulent stresses a,, c1, orw and o,, reaching constants; where

O = Fu (1-U2

O'u = '/(U1 - U 2 )

Figs. 2-6 show results for a particular set of conditions for the shear layer between two

streams of air. The high-speed stream had a velocity U, = 2500 m/s while the low-speed

stream had a velocity U2 = 800 m/s. The thermodynamic quantities in the two incident

streams were equal and were prescribed as T, = 800 K, p, 1 atm, and P, = 0.44 kg/m 3 .

When the ratio of specific heats -y has the same value in the two streams, the convective

Mach number M, is given by',

U1 - U2
a, + a 2

v :ere a, and a2 are the respective speeds of sound in the two layers. The case described by

Figs. 2-6 corresponds to M, = 1.5. The computational domain for this case was a rectangle

of dimensions 0.1 m x 0.05 m with a 201 x 51 grid overlaying it. The grid spacing was uniform

in the streamwise direction and stretched in the cross-stream direction. Based on comparison

with results using other grid spacings, the resolution of the 201 x 51 grid for the computational

domain was found to be sufficient to provide practically grid-independent results for the mean

velocity and turbulent stress profiles. As an example of the grid sensitivity of the calculated

solution, increasing the number of grid points by a factor of approximately 1.7 changed the

values of C6 , and the maximum values of ao,,, O, a , and o,,,, by less than 2% from the values

corresponding to the 201 x 51 grid.

Fig. 2 shows that the shear layer thickness 6(x) increases linearly after an initial develop-

mrent phase. In Fig. 3 the normalized streamwise mean velocity U* at the inlet, outlet and

two intermediate locations is plotted as a function of the similarity variable 77 = (y - y,)16,

where y is the local cross-stream coordinate and y, is the cross-stream coordinate where
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U" = 0.5. It is evident from Figs. 2 and 3 that, at the outflow boundary of the computa-

tional box, the linearly growing regime is well-established and the mean velocity has reached

its self-similar profile. The similarity mean velocity profile of Fig. 3 is somewhat asymmetric

with respect to its center 77 = 0 and indicates a greater penetration into the low-speed side

than the corresponding penetration into the upper, high-speed side of the domain. Fig. 4

shows the mean temperature profile across the shear layer. There is a sharp increase of the

temperature in the core of the shear layer due to the large velocity gradients there. Figs. 5

and 6 show profiles of the normalized streamwise turbulence intensity 0", and the normalized

shear stress a,. All the components of the normalized Reynolds stress tensor reach their

self-similar profiles at the exit of the computational box.

The growth rate parameter Q5 and the maximum values of the normalized Reynolds

stresses aUu, cv, or and au, are nominally constant for the incompressible shear layer. How-

ever, it is clear from the experimental data of Figs. 7 and 8 that these quantities show a

systematic decrease when the convective Mach number M, increases. In Fig. 7, the incom-

pressible value (C6 )0 , which was obtained by calculating a case with a small Me, was used

to normalize the growth rate parameter Q6. Fig. 7 indicates that the Reynolds stress calcu-

lations without the compressibility model (16) show only a modest decrease in the growth

rate parameter. However, introduction of the model for the compressible dissipation leads

to good agreement with both the experimentally observed trends of the sharp decrease in

the growth rate, and the later flattening of the growth rate curve in the high Mach num-

ber range. It is evident from Fig. 8 that computations with the compressible dissipation

model are in qualitative agreement with the observed trend of a decrease in the maximum

normalized Reynolds stress components with an increase in M,.

Growth rate curves for various values of a, are shown in conjunction with the Langley

experimental curve in Fig. 9. Increasing o- from its recommended value of 1.0 leads to a

sharper reduction of the growth rate before the eventual flattening out at high convective

Mach numbers. The flattening of the growth rate curve for high M, is due to the maximum
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turbulent Mach number Mt asymptoting to an equilibrium level (as shown in Fig. 10), and

consequent leveling out of the compressible contribution to the turbulent dissipation rate.

The model of Sarkar et al. 6 for the compressible dissipation, which was used in the

present work, has also been applied by Wilcox 19 to some supersonic and hypersonic flows

within the framework of a k - w turbulence closure. Wilcox's study concludes that the

addition of this model of the compressible dissipation leads to the experimentally observed

reduction in the growth rate of the compressible shear layer, leads to values of skin friction in

adiabatic boundary layers that are somewhat lower than the measured values, and results in

an improved prediction of the separation bubble size in a shock-boundary layer interaction

problem.

5 Conclusions

Initially, a second-order turbulence closure without any explicit compressibility models was

applied to the high-speed shear layer. The results confirmed earlier conclusions 18,20,21 re-

garding the inability of such variable density generalizations of incompressible models to

predict the strong influence of the convective Mach number on the growth rate of the shear

layer. The new model of Sarkar et al. 6 for the compressible dissipation was then incorpo-

rated into a full Reynolds stress closure. The growth rates computed with this model, not

only captured the experimentally observed sharp reduction of the growth rate at interme-

diate Mach numbers, but also showed the tendency to flatten out at large Mach numbers.

The present calculations are also in agreement with the experimental result that the maxi-

mum normalized turbulence intensities and shear stress decrease when the convective Mach

number is increased.

In the future, we propose to apply the present second-order closure to more complex

compressible flows. Though, the consequences of the enhanced dissipation in compressible

flows are consistent with some of the distinguishing features of the high-speed shear layer,
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other compressibility phenomena may become important in different flows like the shock-

boundary layer interaction. Our future studies will address issues relevant to the modeling

of such distinct mechanisms.
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Figure 2. Downstream evolution of the shear layer thickness.
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